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SECTION I - Multiple Choice

Answers for this section should be recorded on the separate answer sheet

handed out with this examination paper.

QUESTION ONE

Ifz=4+2iand w=1-—1, what is the value of = ?
w

(A) 1+3i
(B) 3+ 3
(C) 2—6i
(D) 2+ 6i

QUESTION TWO
What is the eccentricity of the hyperbola 322 — y? = 247?

(A) V2

®) 2V

QUESTION THREE

s

3
What is the value of / tanxz dx ?
0

w

Examination continues next page ...
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QUESTION FOUR
Va
z A
S 1 x
v
The complex number z is shown on the Argand diagram above.
1
Which of the following best represents the complex number E?
(A) (B)
Vo V4
- 1 ------ - 1 ------
1 e ‘
iz iz
S 1 x S 1y
1) 1
v v
(C) (D)
Y4 Y o4
1 1]
_ -l , 3
B I x -1 \
1 e 1
iz S0z
K _1
v v

Examination continues overleaf ...
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QUESTION FIVE

A skydiver jumps from a helicopter and accelerates toward the ground. It is known that
when she opens her parachute, her equation of motion becomes

5v?
327

where v is the velocity of the skydiver and downwards is taken as positive.

=10 —

The skydiver reaches 8 ms ™! when she opens her parachute.
Which of the following statements is TRUE after she opens her parachute?
A) The skydiver’s velocity will decrease.

(

(B) The skydiver’s velocity will remain the same.

(C) The skydiver’s velocity will increase.

(D) In order to analyse velocity, the mass of the skydiver must be known.

QUESTION SIX

When the polynomial P(x) is divided by z? + 9, the remainder is 2z — 5. What is the
remainder when P(z) is divided by x — 3i?

(A) —18 + 15¢
(B) —18 — 15
(C) =5+ 64
(D) —5 — 6i

Examination continues next page ...
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QUESTION SEVEN

=V

v

The diagram above shows the graphs of the functions y = f(z) and y = g(x).
Which of the following could represent the relationship between f(x) and g(x)?

) 9(x) = 5|f(2)|
g(x) =/ f(z)
g(z) = !f( )|
(9(2))” = f(=)

(A
(B)
(C)
(D)

QUESTION EIGHT
I C

The diagram above shows the five points A, B, C', D and E on the circumference of a
circle. /DAC =a°, /EBD =b°, /ACE =c¢°, /BDA =d°, and /CEB = ¢°.

Which of the following must be true?

(A) a® =0 =c°=d° =¢€°

(B) a® 4+0° +¢°+d° 4+ ¢e° = 180°
(C) a®+b° +c°+d° +e° =270°
(D) a®+b° +c¢° —d° —e® =90°

Examination continues overleaf ...
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QUESTION NINE

A complex number z is defined such that |z — 2ik| < k, where k is real and positive.
If —m < arg(z) < m, what is the maximum value of arg(z)?

(4) &
B) 3
© 7
D)

QUESTION TEN

The function f(z) is odd and continuous. Given that / f(z)dx = b, what is the value of
0

/Oa <f(x—a)—f(a—x)> dx?

(A) 0
(B) b
(C) 2b
(D) —2b

End of Section I

Examination continues next page ...
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SECTION II - Written Response

Answers for this section should be recorded in the booklets provided.

Show all necessary working.

Start a new booklet for each question.

QUESTION ELEVEN (15 marks) Use a separate writing booklet.

(a) Solve the quadratic equation 2% — 2iz 4 3 = 0.

(b) Find:

(i) /xem dx
(i) / de

(¢) Given that z =1 —iV/3:
(i) Express z in modulus—-argument form.

(ii) Find 2°.

(d) (i) Find the constants A, B and C such that
322 =22 -8  Ax+ B C

P+ D@—3) 2+4 z-3

.. 3z% — 2z — 8
(ii) Hence find / @+ D@ =3 dx.

(e) A curve is implicitly defined by 2® + ¢* = 224>

d
Find an expression for d—y in terms of z and y.
x

Examination continues overleaf ...

Marks
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QUESTION TWELVE (15 marks) Use a separate writing booklet. Marks

(a) (i) Expand (1 +)(1 4 24)(1 + 34).
(i) Hence show that tan™!(2) + tan™'(

2 2

(b) (i) Sketch the ellipse R 1, clearly showing both foci, both directrices, and

16 12
any intercepts with the axes.

(ii) Find the equation of the tangent to

(iii) Show that the tangent at P and the z-axis intersect on one of the directrices of

the ellipse.

(c) Sketch the region in the complex plane which simultaneously satisfies

3
g <arg(z) < Zﬂ and |z| < 2.

3%
)
o] [=]

3)= .

<]

the ellipse at P(2, 3).

=] ]

]

Clearly label the coordinates of any corners of the region, indicating if they are

included in the region.

(d) x=1

YA f
-

s YT

/

A

=V

L

v

y

The diagram above shows the region bound by the curve y = \/z, the z-axis, and the
line x = 1. This region is rotated about the line x = 1 to form a solid.

Use the method of cylindrical shells to find the volume of the solid.

Examination continues next page ...
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QUESTION THIRTEEN (15 marks) Use a separate writing booklet. Marks

(a) The polynomial P(x) = z* — 92% + 11z + 21 has zeroes a, (3 and 7.

(i) Find a simplified polynomial with zeroes oo + 1, 4+ 1 and v + 1.

(ii) Hence fully factorise P(x).
(b) Given that n is an integer, simplify (1 + )% + (1 — )%™,
(c) V4

=

(_19 _1)

v

The diagram above shows the graph of y = f(z).

Copy or trace the graph onto three separate number planes, each one third of a page.
Use your diagrams to sketch following graphs, clearly showing any intercepts with
axes, turning points, and asymptotes.

i) y=f(z])
(i) y = [f(2))?
(iii) 3 = &/

(d) Let I, = / 22 (Inz)" dz, where n is an integer and n > 0.
1
(i) Show that I,, = % (63 — nIn_l) forn > 1.

(ii) Hence find /1 2? Inzdr.

Examination continues overleaf ...
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QUESTION FOURTEEN (15 marks) Use a separate writing booklet. Marks

(2)
ya

v

b
The diagram above shows the graph y = — /a2 — x2, that is, the section of the ellipse
a
2 2

z Y
?—’—b?:lWhereyZO

(i) Write down the value of/ Va2 —x?d.

2 2

(ii) Deduce that the area of the ellipse 2—2 + :Z_Q =1 is mabunits®.

Examination continues next page ...
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QUESTION FOURTEEN (Continued)

(b)

2k
| P |
View from side: View from above:
T 0
k o0 Pt 2a 0 2k /
2b
L * P
\ )
| | 0
! T |
k

The diagram above represents a three-dimensional solid. The front-most face is a circle
with centre O and diameter k, while the back of the solid is a straight edge of height
2k. The point @) is the midpoint of the straight edge, and the solid has length [ such
that OQ = [. At a distance of x units from the circular face, a cross-section shaded
grey is shown. The cross-section is an ellipse with centre P, such that OP = z. The
semi-major axis length of the ellipse is a and the semi-minor axis length is b.

k(l+ x)
21

(ii) Find a similar expression for b.

(iii) Use the result from (a) to find the volume of the solid.

(i) Show that a =

Examination continues overleaf ...

(o] [=] ]
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QUESTION FOURTEEN (Continued)
(c) Let a, B and ~ be the distinct roots of the cubic equation 2® + bx? + cx — 216 = 0,

where b and c are real.

It is known that o + 3% = 0 and o + v = 0.

(i) Show that 5+~ = 0.

(ii) Deduce that « is real.

(iii) Explain why 3 and 7 are both purely imaginary.

(iv) Find b and c.

Examination continues next page ...

] (=] [=] ]
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QUESTION FIFTEEN (15 marks) Use a separate writing booklet. Marks

(a) A stone with mass mkg is dropped from the top of a cliff. As the stone falls, it
experiences a force due to gravity of 10m Newtons and air resistance of magnitude
mkv Newtons, where v is the velocity of the stone in metres per second and k is a
positive constant. Let the vertical displacement of the stone from the top of the cliff
be y metres, such that

my = 10m — mkv,

where the downwards direction is positive.

(i) Find vy, the terminal velocity of the stone.
(ii) Let t be the time after the stone is dropped in seconds.
1 10
how that t = —1 .
Show that £= 10 1757,

10 —kt
(iii) Hence show that v = " (1—e™).
, 10 1
(iv) Use the result above to show that y = N L+ % (e — 1) .

(v) Five seconds after the first stone is dropped, an identical stone is thrown
15
downward from the top of the cliff with a velocity of " ms~'. It can be shown

that the displacement of the second stone is given by

1
Yy = % <2t —10 — % (e*k(t*@ — 1)) .(Do NOT prove this.)

Note that the first stone is dropped when ¢ = 0, and the second stone is thrown
downward when t = 5.

=]

(o) Describe the behaviour of the velocity of the second stone after it is thrown
downwards.

[ee]

(8) Assuming that the cliff is sufficiently high, show that the second stone will

3
only catch up to the first stone if 0 < k < 10

Examination continues overleaf ...
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QUESTION FIFTEEN (Continued)

(b)

xXy=c

y’=4dax
P

"A(at’, 2at)

X\!

v

The diagram above shows the hyperbola zy = ¢? and the parabola y* = 4az, where ¢
and a are positive. The tangent to the parabola at the point A(atz, 2at) cuts the
hyperbola at two distinct points P and ). The diagram shows the situation when A
is in the first quadrant. The midpoint of PQ is R. The tangent to the parabola at
the point A is given by z = yt — at®>. (Do NOT prove this.)

(i) Find the coordinates of R.
(ii) Show that R always lies on a fixed parabola, and find its equation.

(iii) State any restrictions on the range of y-values that R can take.

Examination continues next page ...
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QUESTION SIXTEEN (15 marks) Use a separate writing booklet. Marks

(a) Use a suitable substitution to show that

/cos\/de:%/Esin\/E—chos\/E—f—C.

(b) 4

4 A,

v

The diagram above shows the graph of y = cos v/x. The kth x-intercept of the graph
is denoted by xj, where k is a positive integer. The areas bounded by the curve and
the x-axis are denoted by A;, As, As, etc., as shown in the diagram above.

(i) Write down the value of xj, in terms of k.

(ii) Use your answer to (a) to find the area of Ay, and hence show that the areas
bounded by the curve and the x-axis form an arithmetic progression.

Examination continues overleaf ...
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QUESTION SIXTEEN (Continued)

()

y [\
NOT TO
SCALE
G
0
&E
!
B v
22 P
The diagram above shows the ellipse & with equation — + i 1 and foci S and S”.
a

The point B has coordinates (0, b), and a circle C with centre B is constructed that
intersects the z-axis at S and S’. The circle and ellipse intersect at G and G’. The
interval from S’ to G intersects the y-axis at F', and ZSGS’ = 0.

(i) Show that BFSG is a cyclic quadrilateral.

b
(ii) Show that cosf = o

(iii) Suppose that for the ellipse £, S'B|| SG.
(a)) Show that S'G bisects ZBGS.
(8) Show that S'G = 20.

(7) Use the geometric properties of an ellipse to find the exact value of the
eccentricity of £.

End of Section II

END OF EXAMINATION
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